Skip to main content

Agents & Tool Calling

Build AI agents that can use tools to accomplish complex tasks.

What You'll Learn

Overview

Agents are AI assistants that can use tools to complete tasks.

How Agents Work

Agents follow a four-step process:

  1. Plan - LLM analyzes the task and selects appropriate tools
  2. Execute - Run selected tools with provided parameters
  3. Observe - Review tool results
  4. Synthesize - Combine results into final answer

Agents vs. Raw LLM

FeatureRaw LLMAgents
Tool usageNoYes - Can call APIs, search, execute code
Multi-step tasksLimitedYes - Can iterate until task complete
Real-time dataNoYes - Can fetch current information
Complex workflowsManualYes - Automated tool chains

Use Cases

Use CaseRecommended Tools
ResearchRAG search + web search
Data analysisCode execution
Customer supportRAG + CRM tools
AutomationCustom MCP tools

Quick Example

Create an agent that uses RAG and web search:

import requests

# Create agent
response = requests.post(
"http://localhost/api/v1/agent/configs",
headers={"Authorization": "Bearer YOUR_API_KEY"},
json={
"name": "research_agent",
"system_prompt": "You are a research assistant. Use web search for current info and RAG for internal docs.",
"model": "gpt-4",
"builtin_tools": ["rag_search", "web_search"],
"tool_choice": "auto",
"max_iterations": 5
}
)

agent_id = response.json()["id"]

# Chat with agent
chat_response = requests.post(
"http://localhost/api/v1/agent/chat",
headers={"Authorization": "Bearer YOUR_API_KEY"},
json={
"agent_id": agent_id,
"message": "What are the latest developments in AI?"
}
)

print(f"Response: {chat_response.json()['response']}")
print(f"Tools used: {chat_response.json()['tool_calls']}")

Next Steps